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M14 
S(1)+-O(1)+ } 
S(1)+-0(2) + 
S(1)+-0(3) + 
S(1)+-0(4) + 
M21 
S(1)+-O(1) + 
S(1)+-0(2) + 
S(1)+-0(3) + 
S(1)+-0(4) + 

Table 8. Sulphur-oxygen bond lengths for M14 and M21 

Bond lengths are in /~,. Errors x 103 are given in brackets. 

1.534 (8) 

S(1)--O(I)- } 
S(1)--0(2)- 1.432 (1) 
S(1)--O(3)- 
S(1)--O(4)- 1"585 (8) 

S(2)-0(5) } 
S(2)-0(6) 1.443 (1) 
S(2)-0(8) 
S(2)-0(7) 1.560 (2) 

1"42 (11) 
1"38 (8) 
1"46 (8) 
1"56 (11) 

S(1)--O(1)- 1.44 (10) 
S(1)--0(2)- 1.48 (8) 
S(1)--0(3)- 1.42 (9) 
S(1)--O(4)- 1-57 (11) 

S(2)-O(5) 1-435 (1) 
S(2)-O(6) 1.440 (1) 
S(2)-O(8) 1-455 (2) 
S(2)-O(7) 1.564 (2) 

positional parameters - which accept the probability 
that H(9) is disordered. More complete and accurate 
information on this important feature of the structure 
should emerge from a full three-dimensional neutron 
structural study of NDaDSO 4 currently being pursued 
by Mr K. D. Rouse at A.E.R.E., Harwell. 

The author wishes to thank Professor W. Cochran 
for his interest and encouragement in this work, Dr 
G. S. Pawley for his very generous help and guidance, 
and Dr P. Ashmore for kindly sending his unpublished 
results. The support of a Science Research Council Re- 
search Fellowship is gratefully acknowledged. 

6. Conclusion 

The techniques, value and application of a moderately 
straightforward extension of usual least-squares pro- 
cedures have been illustrated. Some remaining dif- 
ficulties have been outlined and a few possible im- 
provements suggested. These techniques applied to 
AHS have led most importantly to the conclusion that 
in the phase above the ferroelectric transition the S1 
sulphate group is disordered (equally) between two 
sites. The results of a recent study of the structure in 
the ferroelectric phase indicate that this feature plays 
an important role in the transition to the ferroelectric 
phase (Nelmes, 1972). The nature of the room-temper- 
ature disorder - principally its time scale - remains as 
an interesting problem for investigation by dynamical 
techniques. Advances in this direction are expected 
from some light-scattering experiments currently being 
performed in this Department. 
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X-ray Diffraction from Materials Containing Anti-Phase Domains 

BY R.W. CHEARY AND N.W. GRIMES 
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A theory of X-ray diffraction from materials containing anti-phase domains is developed in terms of the 
characteristic function of the domain thickness distribution and the function Jp which is defined as the 
mean value of FF* for cells separated by p domain boundaries. Also, an expression is derived for the 
domain thickness distribution which may be applied to the analysis of experimental data from any 
system in which the sizes of adjacent domains are uncorrelated. 

Introduction 

In certain order-disorder materials, CuaAu being the 
classic example, the transformation from the dis- 

ordered to the ordered state is associated with the 
formation of anti-phase domains. When the domains 
in such a material are small the X-ray diffraction 
pattern exhibits broadened superlattice lines and lattice 
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lines whose breadths remain sharp and substantially 
independent of the state of order. The first quantitative 
theory of this diffraction behaviour was developed by 
Wilson (1943) on the basis that the mechanism for the 
formation of the domains is that of growth with occasion- 
al mistakes [i.e. a domain thickness distribution f ( t )  = 
( l /D).  e x p ( - t / D )  where D is the mean domain 
thickness]. Although this theory accounts for the first- 
order features of the line broadening it does not ac- 
count satisfactorily for the domain thickness distri- 
bution (Edmunds & Hinde, 1952; Steeple & Edmunds, 
1956). Unfortunately, the development of diffraction 
theories based on other mechanisms of domain for- 
mation, such as multiple nucleation and growth till 
domains meet (Lifschitz, 1937), or increase in local 
order through atomic rearrangement (Taylor, Hinde 
& Lipson, 1951), is not a simple matter and thus 
Wilson's theory remains the only one applicable to 
three-dimensional growth which may be compared 
with experiment. 

Recently, Roessler & Flinn (1967) have taken an 
alternative approach to the problem in that they 
assumed a general domain thickness distribution f ( t )  
as a basis for calculation, as opposed to a model of 
domain growth. In particular they showed that 
f ( t)=(9D/16).  J"(t)/J(O), where J(t) is the Fourier 
transform of a superlattice line profile, provided that 
a series expansion for J"(t) may be terminated at the 
second term. This result must be of limited application, 
however, in view of the very restrictive approximation 
used in its derivation. It does not hold, for example, 
for Wilson's model in which all types of adjacent 
domain are equally probable, for this case leads to 
f ( t ) =  {(9D2/3/16). [J"(t)/J(O)]} 3/4, i.e. J(t)=J(O) exp 
(-4t/3D). 

In the present work, we present a derivation of the 
intensity distribution across a line profile in terms of a 
general domain thickness distribution f(t) ,  by a 
method similar to that of Landau (1937) and Lif- 
schitz (1937), in which the structure amplitude scat- 
tered from a crystallite is calculated as the sum of the 
structure amplitudes scattered by the individual do- 
mains. The domain thickness distribution derived 
from this result retains the property of access 
from experimental data sought by Roessler & Flinn 
(1967), but should be applicable to a wider range of 
circumstances. 

Derivation of the intensity distribution 

The intensity distribution across an X-ray diffraction 
line profile is given, within a scale factor by 

I(s) = 2 [J(t) cos 2rest-K(t) sin 2rcst]dt 
0 

(Wilson, 1962) 

where t is a vector length parallel to the [hkl] direction, 
s = 2  sin 0 / 2 -  1/d and J ( t ) - jK( t )  is the Fourier trans- 
form of I(s) which in physical terms is the mean value 

of FF* for cells separated by a distance t in the [hkl] 
direction. As a consequence of the latter definition the 
derivation of an intensity distribution reduces to a 
one-dimensional problem in relation to the crystal 
structure. 

Consider therefore, a columnar section of unit cells 
parallel to the [hkl] direction, from a crystallite con- 
taining anti-phase domains. Let the boundaries of the 
nth domain be y, and y, + 1, and the structure factor of 
the unit cells in that domain be F, (see Fig. 1). 

I'l I'1 ! Fo F, F. FN-, F~ 

Yo =0 Y, Y2 Y,, Y,,~-, YN-1 yN yN~-I 

Fig. 1. Columnar section of crystal with antiphase domains 

By analogy with the general equation for I(s), the 
amplitude A (s) contributed by the (hkl) planes may be 
expressed as 

I?F(t) exp (2njst)dt (1) A(s)= 

where F(t) is the structure factor of the cell at distance 
t from the origin which in this instance is chosen to 
correspond to t=yo=0.  For the domain structure 
defined in Fig. 1, 

N i y n +  1 
A(s)= ~ Fn exp (2z~jst)dt 

n = O t~Yn 

=~2- -~N F, [exp (2rcjsy,+O--exp (2rcjsy,)] • (2) 
n = 0  

The intensity function is therefore given by 

I(s)=A(s)A*(s) 

L,=0 m=0 ~-~-2 [exp (27~jsy,+ 1)-exp (2rcjsy,)] 

× [exp ( -  2rcjSym + 1) - exp ( -  2~zjsym)] 
N N F.F*m 

= ~ ~ (~))2 {exp [-2.js(y,,,+1-y.+O] 
n = 0  m = 0  

- e x p  [ -  2~jS(ym-- y,+ l)] 

- e x p  [ -  2~jS(ym+ 1-Y,)] + exp [ -  2njs(y,,-y,)]}. (3) 

By making the substitution p = m - n  and q=n, I(s) 
may be expressed by the single summation 

N (N+ 1 --Ipl) 
I ( s )=  ~ (2rcs) 2 

p ~ - - n  

× (2Jp-Jp+l-Jp-1) . (exp (-2njsxp)> (4) 

where Jv is the mean value of FF* for cells separated 
by p domain boundaries, 
i.e. N-p 

Z (F,F*+~,) 
q=0 forp_>0 

JP = ( N + l - l P l )  
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xp is the column length of p adjoining domains and 
(exp (-2rcjsxp)) is the mean value of exp (-27rjsxp), 
i.e. 

(exp ( - 2rcjsxp)) = exp ( - 2rcjsxp)dxp (5) 

where fp(X) is the thickness distribution of p adjoining 
domains. 

If the number of domains N in a column is large, 
equation (4) may be written as 

N 
I ( s ) = N  p=-N (2rcs) z (exp (-- 2ztjsxp)} 

(6) 

since the terms of the form Jp tend to decay far more 
rapidly to zero with respect to p, than (N+ 1-Ipl) .  
In principle this expression should be summed over 
all columnar sections of the crystallite, but if it is 
assumed that particle size effects are negligible or if 
the crystallite is of uniform thickness in the [hkl] 
direction then N will be the same for each columnar 
section. This assumption is not expected to restrict 
the general usefulness of our result. For example, it 
may be shown that the application of equation (6) 
leads directly to an expression for truncated variance 
equivalent to that obtained by Wilson (1963) (see 
Appendix). 

If the thickness of the ith domain is t~ then x z, may 
p 

be expressed as the sum, xp = ~t~ and x0 = 0. Thus for 
i=1 

the situation in which the sizes of the domains are 
uncorrelated 

(exp (-2ztjsxp)}=(exp (-2~zjst~)}P=rn p (7) 

where m is the characteristic function of the domain 
thickness distribution f( t) ,  
i.e. 

m =  ~-f( t )exp ( -  2z~jst )dt . (8) 
, / O  

In the following text, the assumption that the sizes of 
domains are uncorrelated is retained. This would not 
appear to be a serious approximation as a necessary 
condition for correlated domain sizes is the interaction 
of next-but-one boundaries. Wilson's model and the 
model due to Lifschitz (1937) should satisfy the ap- 
proximation. 

Calcu la t ion  o f  Jp 

For an anti-phase domain structure based on the 
transition from a face-centred to a primitive lattice 
there arc four possible structural arrangements. Two 
of these lead to a structure factor + F for a superlatticc 
line whilst the other two have the structure factor - F  
(see Wilson, 1943). When each type of adjacent domain 
structure is equally probable the difference equation 
dcfining the probability Qp of two domains separated 
by p boundaries being similar is given by 

Qp+,= 3. ( 1 -  Qp) 

which from the condition Q0 = 1 gives 

Qp= ¼[1 + 3(-3)P1. (9) 

The function Jp is therefore given by 

Jp= 2 . ¼ ( +  F) [QpF* + 3.  (1 - Qp) ( -  F*)] 
+ 2 . ¼ ( - F )  [Qp(-F*)+3(1-Qp)F*] 
= r r * ( -  3) u . (10) 

On substituting for Jp, the expression for I(s) now 
becomes 

8NFF* 16NFF* n 
I ( s )=  --j~-2)s) 2- + 3(2zts)2 ~ ( - 3 )  p . (m *p + m p) 

p=l 

8NFF* 16NFF* [ m* m ] 
- 3(~zts)~ + 3 ( 2 r -  z- 3--q_m----g- + ~ (11) 

which is an even function of s [i.e K(t)=0]. Thus we 
have an equation for the intensity distribution across 
a line profile, the form of which may be calculated from 
the domain thickness distribution. Some modification 
of this result is necessary however, if all types of adja- 
cent domain are not equally probable as in Cu3Au 
alloy, but this only requires that Jp be recalculated. 

Evaluat ion  o f  domain  th ickness  distribution 

To obtain an expression for the domain thickness 
distribution, consider the Fourier transform of 
(2zts)Zl(s) which is given by 

l~ :(2zts)2I(s) exp (2z~jst)ds 

8NFF* l +°° 16NFF* 
- 3 _ooexp (27rjst)ds + 3 

N iq-oo 
x p~= 1 ( -3)P . _ ooexp (2ztjst) (m*" + mP)ds 

8NFF* 16NFF* 
- - -  J ( t ) +  

3 3 

N i:fp(t)[J(x+ x ~ ( 3)p. t )+J(x - t ) ]dx  
p=l 

_ 8NFF* J ( t )+  16NFF* N 
3 -  3 p=,~ (-3)"  . fp(t) (12) 

where the terms of the form J ( x + t )  are Dirac delta 
functions [for the properties of these functions see 
Irving & Mullineux (1966)]. 

If the formulation I(s)= 2 cos 2rest dt is sub- 

stituted into the left hand side of equation (12) and 
NFF* is replaced by J(O)/D, where D is the mean do- 
main thickness, it is possible to show by comparing 
each side of the resultant equation that 



R. W. C H E A R Y  AND N. W. G R I M E S  457 

J'(0) = -4J(O)/3D 
and 

j , , ( / )  = 16J(0) N 

. . . .  3b ....... ~ ( - ~ ) % ( t ) .  
p = l  

Let 

Z(s)= ~ J"( t)  30 J(O) exp(-2~rjst)dt=H(s)-jG(s) (13) 

so that on substituting for J"(t)/J(O), 

Z ( s ) = -  1__6_6 ~ ( - 3 ) ' -  16m 
3D 3D (3 + m) p = l  

or, 

z(s)= 

and consequently 

3Z(s) 
m =  

The expression for the domain thickness distribution 
is therefore given by performing a cosine transform 
on m + m*, 

i.e. 

f ( t ) =  m*) cos 2zest ds 

l + (y~-V.~s)j cos 2zest ds(15) 

where ?=  16/3D. Utilizing the symmetry of this inte- 
grand about s = 0  and substituting Z(s)=H(s)-jG(s), 

12 f~ {yn(s)-[G2(s)+nZ(s)]} f ( t ) =  {GZ(s)+[H(s)_ y]2} . cos 2rot ds. (16) 

We observe finally that this result is consistent with 
Wilson's model, for in this case 
d(t)=J(O) exp(-4t/3D), so that 

16 (-~D -2zcjs ) 

9D 2 [(~)z + (2re)z] (17) 

2 
(m + m*)= . . . . . . .  • 

[ 1 + (2zcsD) 2] 

The domain thickness distribution is therefore 

f ( t )=Re  [ I~_oo 2 exp (2zcjst)ds ] [ l - q : ( ~ ) q - j  (18) 

which after integration around an infinite semi-circle 
in the upper half of the complex plane gives f ( t )= 
(I /D).  exp ( - t / D ) ,  as expected. 

Summary 
Two results have been derived: 
(i) the intensity distribution I(s) in terms of the do- 

main-thickness distribution, 
(ii) the domain-thickness distribution in terms of pa- 

rameters which can be obtained from experimen- 
tal data. 

It should be emphasized that unless experimental 
results are accurate and reliable the application of the 
latter will serve little purpose. If the operation of one 
Fourier transform on an intensity profile leads to 
errors in the J(t) characteristic, which is frequently 
the case (see for instance Young, Gerdes & Wilson, 
1967), further transform operations together with a 
double differentiation procedure must result in much 
larger errors in the final domain-thickness distribution. 
Even reliable crystallite-size distributions have proved 
difficult to determine, because of systematic errors 
(see, for instance, Langford, 1968), and they only 
require the second derivative of the Fourier transform 
of the intensity profile for their evaluation. 

It is a pleasure to acknowledge useful comments 
made to us by Professor A. J. C Wilson, F.R.S., 
concerning equation (6). One of us (R.W.C.), is also 
indebted to the Science Research Council for financial 
support. 

APPENDIX 
To derive the expression for variance corresponding 
to equation (6) we recall that for the range al to a2, 

1o2 sZI(s) ds 
WS - -  - - G I  

oo  

i _ / ( s ) d s  (19) 

where, in our nomenclature, 

: ....... ~ . . . . .  ~ s)ds=N(xl}Jo (20) 

and 

S ~2 s2I(s) ds=N ~, (2Jp-Jp+l-Jp-O 
- - a l  p =  - - N  

I~2 1" 
x -~, (27) ~ (exp (-2rc]x,s)}ds. (21) 

Now when p = 0, (exp (-2rcjxps)} = 1, therefore since 
J, = J - l ,  the contribution made to the variance before 
normalizing will be 

N 
2zc2 • (do- J,) (o"1 + 0"2). (22) 

When/) = 1, (exp ( -2~ jx , s )}=  exp (-2rcjxls)dxl 

and the contribution to variance is 

_ 4re 2N (Jo_2Jl+j2) f~(x)dx  1 

I °,- x exp ( -  2rcjsx,)ds. 
- - G  1 

If 0", and 0"2 are sufficiently large the double integral 
in this expression is approximately 

= Io~fl(x) • ~(xOdx~ = !2. fl(O) • (23) 
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The contr ibution f rom p = 1 is therefore 

Ar ( J 0 -  2J1 +./2) fl(0) (24) = _ -g~ 

and there will be a corresponding contr ibution f rom 
p = - 1. Similarly when IPl > 1 the contr ibution is 

N 
8n z (2Jv-  Sv+ l -  Jv_x) . fp(O) 

but this is identically zero since by definition fp(0)=  0 
in this case. 

Summing over all p and normalizing we obtain 

I ,E= (a~+a2)_.  _(J0-Jl_~) _ .  1 (Jo-2Jl+J2).f~(O) 
s 2nz (xi)Jo 4n 2 (xi)Jo 

(25) 
in agreement with Wilson (1963). 
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Application de la Notion de Groupe Rigide/ l  la D6termination de Structures Cristallines Simples 

PAR DANIEL ANDRI~, ROGER FOURME ET MICHEL RENAUD 

Laboratoire de Chimie-Physique, Matikre et Rayonnements, de l'Universitd Paris VI, associd au C.N.R.S., 
Bdtiment 350, 91-Orsay, France 

(Refu le 2 mai 1972) 

An algorithm is given which is suitable for solving molecular structures when the shape of the whole 
molecular skeleton, or at least the main part of it, can be assumed. The molecular parameters, i.e. 
three rotations and three translations in the general case, are randomly generated by a Monte-Carlo 
method. The packing thus obtained is group-refined using only a few selected strong reflexions, then 
kept or rejected according to several tests on the weighted reliability index; the best structures are 
furtherly group-refined using an increasing number of reflexions up to a given limit. The whole pro- 
gram has been arranged to be as fast as possible and fully automatic. Such a method is helpful when 
the experimental data are poor or restricted to some extent (high-pressure single-crystal data, un- 
stable crystals . . . .  ) or in cases of static or dynamic disorder (plastic crystals). Even when accurate 
three-dimensional data are available, it may be of value and possibly faster than other methods, if 
one or several molecular parameters are a priori fixed from symmetry considerations or one atom 
located (heavy atom). Several typical examples of structures which have been solved or redetermined 
are given. 

Les m6thodes de recherche de structures cristallines 
pouvent &re class6es en trois catdgories principales: 

(1) les m6thodes 'directes' permettant  d 'obtenir  les 
phases des facteurs de structure h partir  de l ' informa- 
tion contenue dans le r6seau rdciproque R;* 

(2) les m6thodes utilisant la distribution de Patter- 
son; 

(3) les m&hodes opdrant dans l 'espace direct R et 
permettant  de 'mesurer '  l 'accord entre les rdsultats 
exp6rimentaux et ceux obtenus h partir  d 'un module 
structural d6termin6; ceci est r6alis6 en consid6rant 

une fonction G des n param&res structuraux ddcrivant 
les positions atomiques dans la maille dldmentaire. Si 
elles sont moins g6ndrales et moins efficaces que les 
pr6cddentes, lcur int6r& est 6vident, no tamment  quand  
l ' informat ion obtenue par diffraction X est qualitative- 
ment  ou quanti tat ivement appauvrie. 

La m6thode d6crite ici relive de cette derni~re cat& 
gorie.t  Apr~s en avoir d6crit le principe, nous don- 
nons quelques exemples caract6ristiques de son appli- 
cation h la recherche des structures de compos6s 
organiques simples. 

* Le programme de calcul correspondant, baptis6 PYTHIE, 
est 6crit en Fortran V pour UNIVAC 1106/1108. Les temps de 
calculs donn6s ci-apr~s sont relatifs ~ l'ordinateur UNIVAC 
1108. 

Rappel sur les m6thodes de recherche dans l'espace r6el 

Les m6thodes permettant  de trouver les extremums 
des fonctions peuvent 8tre rdparties dans trois rubri- 


